Physics 13-03 Nuclear Fission		Name:
Fission		× 800
of a nucleus		9930
Releases a lot of		(a)
• An unstable nucleus can naturally decay with α or β radiation, but can take a long time		
•done by hitting a large nucleus with a	(β radiation)	وم عدوري
Chain reaction		(b)
When the nucleus splits it releases free		20 000
Those can other nuclei and	them	
Critical mass – Minimum amount ofma	terial necessary to sustain fission	(c)
reaction		82 030 T
Number of fission reactions increases		FF2
Nuclear Reactor	Primary system Sec	condary system
• To keep a nuclear fission reaction from becoming a	Hot water St	Electric generator
, slow down the neutrons with	Control	
Fuel rods contain	rods	
Control rodsneutrons	Fuel rods	Heat exchanger
 Insert control rods toreaction 	Containment	
Fission reactionwater	vessel	Condenser
Steam turns turbines to make	(shielding)	5
water goes back to be heated		Pump
Energy from Fission	Core Noutreps pot (fuel and	Shielding
• The mass of the products of fission is	thermalized; moderator) Cooling water
than parent nucleus	reaction stops.	
• That mass is converted to by $E = mc^2$		
Average fission reaction produces about	MeV of energy	
Find the energy released in the fission of uranium-235 given in the equation		
$^{1}_{0}n + ^{235}_{92}U \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3 ^{1}_{0}n$		
Neutron: 1.008665 u, ²³⁵ U: 235.0439299 u, ¹⁴¹ Ba: 140.9144035 u, ⁹² Kr: 91.926173094 u		

Physics 13-03 Nuclear Fission

Calculate the amount of energy produced by the fission of 1.00 kg of 239Pu, given the average fission reaction of ²³⁹Pu produces 211.5 MeV. The atomic mass of ²³⁹Pu is 239.05 u.

Practice Work

- 1. How can a nuclear reactor contain many critical masses and not go supercritical? What methods are used to control the fission in the reactor? (OpenStax C32.23)
- 2. If a nucleus elongates due to a neutron strike, which of the following forces will decrease? (HSP 22.20)
 - (a) Nuclear force between neutrons only
 - (b) Coulomb force between protons only
 - (c) Strong nuclear force between all nucleons and Coulomb force between protons, but the strong force will decrease more
 - (d) Strong nuclear force between neutrons and Coulomb force between protons, but Coulomb force will decrease more
- 3. (a) Calculate the energy released in the neutron-induced fission (similar to the spontaneous fission in Example 32.3) $n + \frac{^{238}}{_{\square}}U \rightarrow \frac{^{96}}{_{\square}}Sr + \frac{^{140}}{_{\square}}Xe + 3n$, given $m(\frac{^{238}}{_{\square}}U) = 238.050783 u$, $m(\frac{^{96}}{_{\square}}Sr) = 95.921750 u$ and $m(\frac{^{140}}{_{\square}}Xe) = 139.92164 u$. (b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Confirm that the total number of nucleons and total charge are conserved in this reaction. (OpenStax 32.43) **177.0 MeV; 239 nucleons, 92 + charges**
- 4. (a) Calculate the energy released in the neutron-induced fission reaction $n + {}^{235}_{\Box}U \rightarrow {}^{92}_{\Box}Kr + {}^{142}_{\Box}Ba + 2n$, given $m({}^{235}_{\Box}U) = 235.043923 u$, $m({}^{92}_{\Box}Kr) = 91.926269 u$ and $m({}^{142}_{\Box}Ba) = 141.916361 u$. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction. (OpenStax 32.44) **179.4 MeV; 236 nucleons, 92 + charges**
- 5. (a) Calculate the energy released in the neutron-induced fission reaction $n + {}^{239}_{\square}Pu \rightarrow {}^{96}_{\square}Sr + {}^{140}_{\square}Ba + 4n$, given $m({}^{239}_{\square}Pu) = 239.0521634 u$, $m({}^{96}_{\square}Sr) = 95.921750 u$ and $m({}^{140}_{\square}Ba) = 139.910581 u$. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction. (OpenStax 32.45) **180.6 MeV; 240 nucleons, 94 + charges**
- 6. The naturally occurring radioactive isotope ${}^{232}_{\square}Th$ does not make good fission fuel, because it has an even number of neutrons; however, it can be bred into a suitable fuel (much as is bred into ${}^{239}_{\square}U$). (a) What are Z and N for ${}^{232}_{\square}Th$? (b) Write the reaction equation for neutron captured by ${}^{232}_{\square}Th$ and identify the nuclide ${}^{A}_{\square}X$ produced in $n + {}^{232}_{\square}Th \rightarrow {}^{A}_{\square}X + \gamma$. (c) The product nucleus β^{-} decays, as does its daughter. Write the decay equations for each, and identify the final nucleus. (d) Confirm that the final nucleus has an odd number of neutrons, making it a better fission fuel. (e) Look up the half-life of the final nucleus to see if it lives long enough to be a useful fuel. (OpenStax 23.48) Z = 90, N = 142; Thorium; Daughters are ${}^{233}Pa$ and ${}^{233}U$; 141 neutrons; 160000 yrs
- 7. The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many ${}^{235}_{\square}U$ nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of ${}^{235}_{\square}U$ is fissioned in one year of full-power operation? (OpenStax 32.49) **2570 MW; 8.04** × **10**¹⁹ **fissions/s; 990 kg**